Реферат На тему элт монитор. Жк монитор. Принцип работы и характеристики

Эволюция видеосистем

Адаптер MDA
Первый персональный компьютер фирмы IBM, появившийся в 1981 году, был рассчитан на обработку исключительно текстовой информации. Поэтому основное требование к адаптеру заключалось в получении высококачественных текстовых изображений в черно-белом варианте (MDA – Monochrome Display Adapter). Этот адаптер формирует на экране 25 строк текста по 80 символов в каждой. Матрица элемента состоит из 9 пикселов по горизонтали и 14 по вертикали (разрешающая способность 720х350 пикселов). Кроме того, с его помощью создаются эффекты инверсного изображения (inversion), повышенной яркости (intensity), подчёркивания (underline) и мигания (blinking).

Адаптер CGA
Появившийся в 1982 году, он обладает возможностью формировать графические изображения и текст в цвете (16 цветов для текстового режима и 4 для графического). При этом, однако, в жертву была принесена разрешающая способность: в адаптере CGA (Color Graphics Adapter) символьная матрица состоит из 8 пикселов по горизонтали и 8 по вертикали или 640х200 точек в графическом режиме. Одновременно с этим адаптером была предпринята попытка внедрения светового пера, но это устройство не приобрело широкой популярности и впоследствие было заменено мышью.

Адаптер EGA
1984 год. Довольно сложная видеосистема. Символьная матрица – 8х14; разрешающая способность – 640х350. Как в тексте, так и в графике этот адаптер позволял видеть 16 цветов из 64 возможных (EGA – Enhanced Graphics Adapter).

Адаптер VGA
Год появления – 1987. Матрица символа для текстового режима – 9х16. Максимальное разрешение – 720×400. Адаптер допускал работу с 256 цветами в графическом режиме из 256К возможных. Название VGA расшифровывается как Video Graphics Array.

Адаптер sVGA
Почти сразу после появления стандарта VGA большинство разработчиков предприняли усилия по его улучшению. В результате нововведения зачастую не совпадали между собой, поскольку каждый считал нужным делать это по-своему. Всякая разработка, тем не менее, поддерживала VGA, а все дополнительные режимы и возможности были объединены под общим понятием sVGA (super VGA.Для систематизации усилий разработчиков в этом направлении ассоциация VESA предложила свой стандарт на новые видеоадаптеры, среди характеристик которого, в частности, стандартный режим с разрешением 800х600 точек с 256 цветами, не менее 512 К видеопамяти.

Адаптер Hercules
Параллельно с адаптерами фирмы IBM появляются аналогичные устройства других фирм, наиболее известным из которых является изделие компании Hercules. Первым из этого ряда был адаптер, появившийся в 1982 году и допускавший качественное изображение текстовой информации и возможность работы в графическом режиме (матрица 9×14 для текста и разрешение 720х350 для графики).В дальнейшем появлялись и цветные устройства (16 цветный Hercules InColor Card 1987 года.

Похожие

Программа по формированию навыков безопасного поведения на дорогах…Приятно слышать, еще раз как меня зовут -монитор! Кто я -монитор! Молодцы ребята!

Темы рефератов по дисциплинам «оэп», «ОМиуои», «ОУвРТ»Элт и устройства отображения информации на их основе

Принцип работы, основные характеристики, перспективы дальнейшего развития

Устройство Вывода Информации «Монитор»Монитор является универсальным устройством вывода информации в настольных компьютерах до сих пор часто используются мониторы на электронно-лучевой…

Сразу следует оговориться никогда не экономьте на мониторе! Монитор…Не важно, работаете ли вы с бухгалтерской программой, пишите письма, играете в игры, управляете сервером – вы всегда используете…

Программа по формированию навыков безопасного поведения на дорогах…СанПиН 4 178-02). В 2009-2010 учебном году кабинет был оснащен 10 новыми ученическими компьютерами (монитор, системный блок, мышь,…

Люцина Станиславовна, 50 лет, учитель географииНеобходимым элементом действия является экран, на который проецируется монитор компьютера

Монитор rml5 ПаспортОттиск клейма, личная подпись, расшифровка подписи должностного лица завода, ответственного за приемку

МониторыМонитор также должен быть максимально безопасным для здоровья: он должен обеспечивать возможность комфортной работы, предоставляя…

ИсторияСистемные требования: Pentium 90,Win 95/NT, 16 Мб озу, монитор с разрешением 640х480, HiColor (не менее 32 тыс цветов), 4х cd-rom,…

Компьютер (арм учителя: монитор+системный блок+клавиатура+мышь)Начальный курс географии 7 кл

География. Наш дом Земля. Материки, океаны, народы и страны

Программа по формированию навыков безопасного поведения на дорогах…Необходимым элементом действия является экран, на который проецируется монитор компьютера

Программа по формированию навыков безопасного поведения на дорогах……

Программа по формированию навыков безопасного поведения на дорогах…Необходимое оборудование: ммг ак, компьютер, видеопроектор (или монитор с диагональю более 70 см.), учебные патроны и магазин к ак,…

Тема урока: «Компьютер и его основные устройства». Тип урокаОпорные понятия: Периферийные устройства: системный блок, монитор, принтер, сканер, клавиатура, мышь, аудио система

Сколько трёхклеточных уголков могло получиться?В таниной квартире имеется 8 розеток, 21 тройник и неограниченный запас компьютеров и принтеров. Какое наибольшее число приборов…

Техническое обеспечение образователного процесса в оуРабочее место учителя: системный блок Aquarius (Celeron 2,2 Ггц, 1гб озу), кабель, клавиатура и мышь, аудио-колонки, монитор ж/к…

Школьные материалы

Школьные материалы

Виды плоских мониторов

Электролюминесцентные дисплеи.Использовались в переносных ПК(лаптопы, ноутбуки.
Плазменные индикаторные табло используют ионизированные газы (неон, аргон) и позволяют строить большие экраны.
Светоизлучающие дисплеи на базе органических материалов LEP;
Дисплеи на базе автоэлектронной эмиссии FED (Field Emisson Display);
Дисплеи с использованием низкотемпературного поликристаллическогокремния LTPS (Low Temperature PolySilicon);
Плазменные дисплеи PDP (Plasma Display Panel).
Жидкокристаллическое (ЖК) табло на пассивных и активных матрицах;
Проекционный — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал);
OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод);
Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза;
Остновимся подробнее на работе ЖК мониторов.

История развития

В 1859 году Юлиус Плюккер открыл катодные лучи. В 1879 году Уильям Крукс создал прообраз электронной трубки, установил, что катодные лучи распространяются линейно, но могут отклоняться магнитным полем. Так же он обнаружил, что при попадании катодных лучей на некоторые вещества, последние начинают светиться.

В 1895 году немецкий физик Карл Фердинанд Браун на основе трубки Крукса создал катодную трубку, получившую названия трубки Брауна. Луч отклонялся магнитно только в одном измерении, второе направление развёртывалось при помощи вращающегося зеркала. Браун решил не патентовать свое изобретение, выступал со множеством публичных демонстраций и публикаций в научной печати. Трубка Брауна использовалась и совершенствовалась многими учёными. В 1903 году Артур Венельт поместил в трубке цилиндрический электрод (цилиндр Венельта), позволяющий менять интенсивность электронного луча, а соответственно и яркость свечения люминофора.

В 1905 году Альберт Эйнштейн опубликовал уравнение внешнего фотоэффекта, открытого в 1877 году Генгихом Герцем, и исследованного Александром Григорьевичем Столетовым.

В 1906 году сотрудники Брауна М. Дикман и Г. Глаге получили патент на использование трубки Брауна для передачи изображений, а в 1909 году М. Дикман предложил в статье фототелеграфное устройство для передачи изображений с помощью трубки Брауна, в устройстве для развёртки применялся диск Нипкова.

С 1902 года c трубкой Брауна работает Борис Львович Розинг. 25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. В 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.

В начале и середине XX века значительную роль в развитии ЭЛТ сыграли Владимир Зворыкин, Аллен Дюмонт и другие.

Классификация

По способу отклонения электронного луча все ЭЛТ делятся на две группы: с электромагнитным отклонением (индикаторные ЭЛТ и кинескопы) и с электростатическим отклонением (осциллографические ЭЛТ и очень небольшая часть индикаторных ЭЛТ).

По способности сохранять записанное изображение ЭЛТ делят на трубки без памяти и трубки с памятью (индикаторные и осциллографические), в конструкции которых предусмотрены специальные элементы (узлы) памяти, с помощью которых единожды записанное изображение может многократно воспроизводиться.

По цвету свечения экрана ЭЛТ подразделяются на монохромные и многоцветные. Монохромные могут иметь разный цвет свечения: белый, зелёный, синий, красный и другие. Многоцветные подразделяются по принципу действия на двухцветные и трёхцветные. Двухцветные — индикаторные ЭЛТ, цвет свечения экрана которых меняется или за счет переключения высокого напряжения, или за счет изменения плотности тока электронного луча. Трёхцветные (по основным цветам) — цветные кинескопы, многоцветность свечения экрана которых обеспечивается специальными конструкциями электронно-оптической системы, цветоделительной маски и экрана.

Осциллографические ЭЛТ подразделяют на трубки низкочастотного и СВЧ-диапазонов. В конструкциях последних применена достаточно сложная система отклонения электронного луча.

Кинескопы подразделяют на телевизионные, мониторные и проекционные. Мониторные кинескопы имеют меньший шаг маски, чем телевизионные. Проекционные кинескопы имеют размер от 7 до 12 дюймов, повышенную яркость свечения экрана, являются монохромными и воспроизводят один из трёх базовых цветов RGB — красный, зелёный, синий (см. Кинескопный видеопроектор).

Применение

Кинескопы используются в системах растрового формирования изображения: различного рода телевизорах, мониторах, видеосистемах.

Осциллографические ЭЛТ наиболее часто используются в системах отображения функциональных зависимостей: осциллографах, вобулоскопах, также в качестве устройства отображения на радиолокационных станциях, в устройствах специального назначения; в советские годы использовались и в качестве наглядных пособий при изучении устройства электронно-лучевых приборов в целом.

Знакопечатающие ЭЛТ используются в различной аппаратуре специального назначения.

Экранные покрытия

Во время работы монитора поверхность его экрана подвергается интенсивной электронной бомбардировке, в результате чего может накапливаться заряд статического электричества. Это приводит к тому, что поверхность экрана “притягивает” большое количество пыли, а кроме того, при прикосновении рукой к заряженному экрану пользователя может неприятно “щелкнуть” слабый электрический разряд. Для уменьшения потенциала поверхности экрана на него наносят специальные проводящие антистатические покрытия, которые в документации обозначают сокращением AS – anti-static.

Следующая цель нанесения покрытий – устранение отражений окружающих предметов в стекле экрана, которые мешают при работе. Это так называемые антиотражающие покрытия (anti-reflection, AR). Для уменьшения эффекта отражения поверхность экрана должна быть матовой. Один из способов получения такой поверхности – травление стекла для получения не зеркального, а диффузного отражения (Диффузным называют отражение, при котором падающий свет отражается не под углом падения, а во все стороны). Однако при этом свет от люминофорных элементов также диффузно рассеивается, изображение становится расплывчатым и теряет яркость. В последнее время для получения антиотражающих покрытий используют тонкий слой двуокиси кремния (Silica – кварц), на котором травятся профилированные горизонтальные канавки, препятствующие попаданию отражения внешних предметов в поле зрения пользователя (при нормальном положении его около монитора). При этом подбирают такой профиль канавок, чтобы ослабление и рассеивание полезного сигнала было максимальным.

Еще один неблагоприятный фактор, с которым борются путем обработки экрана, — блики от внешних источников света. Для уменьшения этих эффектов на поверхность монитора наносится слой диэлектрика с малым показателем преломления, имеющим низкий коэффициент отражения. Такие покрытия называются антибликовыми или антиореольными (anti-glare, AG).Обычно применяют комбинированные многослойные покрытия, сочетающие защиту от нескольких мешающих факторов. Фирмой Panasonic разработано покрытие, в котором применены все описанные виды покрытий, и оно имеет название AGRAS(anti-glare, anti-reflection, anti-static). Для увеличения интенсивности проходящего полезного света между экранным стеклом и слоем с низким коэффициентом отражения наносится переходной слой, имеющий коэффициент преломления, средний между стеклом и внешним слоем (эффект просветления), обладающий еще и проводящими свойствами для снятия статического заряда.

Иногда используются другие комбинации покрытий – ARAG(anti-reflection, anti-glare) или ARAS (anti-reflection, anti-static). В любом случае покрытия несколько снижают яркость и контрастность изображения и влияют на цветопередачу, однако удобство работы с монитором, получаемое от применения покрытий, окупает эти недостатки. Проверить наличие антибликового покрытия можно визуально, рассматривая отражение от внешнего источника света при выключенном мониторе и сравнивая его с отражением от обычного стекла.

Наличие антибликовых и антистатических покрытий стало нормой для современных мониторов, а некоторые различия в качестве покрытий, определяющие их эффективность и степень искажения изображения, связанные с технологическими особенностями, практически не влияют на выбор модели.

Есть мнение, что для устранения бликов и защиты от статического электрического целесообразно применять дополнительный защитный экран. При этом обычно используются не очень дорогие экраны, которые настолько уступают по своему эффекту тем покрытиям, которые наносятся на современные кинескопы, что их применение не только нецелесообразно, но и вредно для глаз из-за собственных экранных бликов. Как правило, защиты от электромагнитного излучения они почти не обеспечивают. Хорошие же фильтры с поляризацией бликов и максимальной защитой от излучений стоят около 100 дол. Однако если монитор удовлетворяет спецификации Low Radiation, то необходимость использования такого фильтра также сомнительна. Таким образом, фильтр на современный монитор ставить не следует.

Плоскостность экрана

Следующей характеристикой монитора является спецификация плоскостности экрана. Чем “площе” экран, тем меньше искажаются на нем геометрические фигуры. Сейчас выпускаются два основных типа кинескопов, у которых экран имеет сферическую и цилиндрическую кривизну. Поверхность экрана кинескопа в первом случае представляет собой сегмент, вырезанный из сферы, а во втором – из вертикального цилиндра. На 14-дюймовых мониторах применяются сферические экраны, которые имеют довольно большую кривизну (R – 0,5 м) по обоим направлениям. Затем появились сферические кинескопы с меньшей кривизной (для 15 дюймов – R=1 м), которые по сравнению с их предшественниками выглядели почти идеально плоскими. Такие ЭЛТ стали называть трубками с плоским квадратным экраном, ил FST (Flat Square Tube). Происхождение названия связано с тем, что углы кинескопа не закругленные, а прямые. Трубки с апертурной решеткой (Trinitron, Diamondtron, SonicTron) делают действительно плоским по вертикали. При этом радиус их кривизны по горизонтали примерно равен радиусу кривизны трубок FST. Из-за привычки глаза к сферическому экрану первое впечатление от изображения, получаемого на трубке Trinitron, такое, будто оно вогнуто в другую сторону. И, наконец, появились совершенно плоские кинескопы (по всем направления) – PanaFlat компании Panasonic.

Кроме уменьшения геометрических искажений более плоские экраны обладают лучшими антибликовыми свойствами в силу действия обычных законов отражения.

Цветные экраны

В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

Основной элемент дисплея электронно-лучевая трубка

Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором — специальным веществом, способным излучать свет при попадании на него быстрых электронов.

Люминофор наносится в виде наборов точек трёх основных цветов — красного, зелёного и синего. Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра.

Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом.

Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел — точку, из которых формируется изображение (англ. pixel — picture element, элемент картинки).

Расстояние между центрами пикселов называется точечным шагом монитора. Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг составляет 0,28 мм.(и меньше) При таком шаге глаз человека воспринимает точки триады как одну точку «сложного» цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки «нацелены» на один и тот же пиксел, но каждая из них излучает поток электронов в сторону «своей» точки люминофора.

Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны.

Перед экраном на пути электронов ставится маска — тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.

ЭЛТ можно разбить на два класса — трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

Электронно-лучевые мониторы

Самым
важным элементом такого монитора
является кинескоп, называемый также
электронно-лучевой трубкой. ЭЛТ
представляет собой электронный вакуумный
прибор в стеклянной колбе, в горловине
которого находится электронная пушка,
а на дне — экран, покрытый люминофором.
Нагреваясь, электронная пушка испускает
поток электронов, которые с большой
скоростью устремляются к экрану. Поток
электронов (электронный луч) проходит
через фокусирующую и отклоняющую
катушки, которые направляют его в
определенную точку покрытого люминофором
экрана. Под воздействием ударов электронов
люминофор излучает свет, который видит
пользователь, сидящий перед экраном
компьютера.

В
электронно-лучевых мониторах используются
три слоя люминофора: красный,
зеленый
и синий.
Для выравнивания потоков электронов
применяется так называемая теневая
маска — металлическая пластина, имеющая
щели или отверстия, которые разделяют
красный, зеленый и синий люминофор на
группы по три точки каждого цвета.
Качество изображения определяется
типом используемой теневой маски; на
резкость изображения влияет расстояние
между группами люминофора (шаг расположения
точек).

На
рис. 31 показан типичная электронно-лучевая
трубка в разрезе.

Рис.
31 – Цветная ЭЛТ в разрезе: 1 – электронные
пушки; 2 – электронные лучи; 3 – фокусирующая
катушка; 4 – отклоняющие катушки; 5 –
анод; 6 – теневая маска; 7 – люминофор;
8 – маска и зерна люминофора в увеличении.

Химическое
вещество, используемое в качестве
люминофора, характеризуется временем
послесвечения, которое отражает
длительность свечения люминофора после
воздействия электронного пучка. Время
послесвечения и частота обновления
изображения должны соответствовать
друг другу, чтобы не было заметно мерцание
изображения (если время послесвечения
очень мало) и отсутствовали размытость
и удвоение контуров в результате
наложения последовательных кадров
(если время послесвечения слишком
велико).

Электронный
луч движется очень быстро, прочерчивая
экран строками слева направо и сверху
вниз по траектории, именуемой растром.
Период сканирования по горизонтали
определяется скоростью перемещения
луча поперек экрана. В процессе развертки
(перемещения по экрану) луч воздействует
на те элементарные участки люминофорного
покрытия экрана, где должно появиться
изображение. Интенсивность луча постоянно
меняется, в результате чего изменяется
яркость свечения соответствующих
участков экрана. Поскольку свечение
исчезает очень быстро, электронный луч
должен вновь и вновь пробегать по экрану,
возобновляя его. Этот процесс называется
регенерацией
изображения.

В
большинстве мониторов частота регенерации,
которую также называют частотой
вертикальной развертки, во многих
режимах приблизительно равна 85 Гц, т.е.
изображение на экране обновляется 85
раз в секунду. Снижение частоты регенерации
приводит к мерцанию изображения, что
очень утомляет глаза. Следовательно,
чем выше частота регенерации, тем
комфортнее себя чувствует пользователь.

Очень
важно, чтобы частота регенерации, которую
может обеспечить монитор, соответствовала
частоте, на которую настроен видеоадаптер.
Если такого соответствия нет, изображение
на экране вообще не появится, а монитор
может выйти из строя. В целом видеоадаптеры
обеспечивают намного большую частоту
регенерации, чем поддерживается
большинством мониторов

Именно поэтому
изначальная частота регенерации,
определенная для большинства видеоадаптеров
с целью предотвращения повреждения
монитора, составляет 60 Гц.

Основные
характеристики

Схема создания изображения

Цвета на экране цветного монитора (в монохромных кинескопах все обстоит иначе) образуются в результате смешения красной, зеленой и синей (Red, Green, Blue – RGB) составляющих, имеющих различные интенсивности. Поэтому на внутреннюю поверхность экрана кинескопа наносятся три типа люминофорных элементов, дающих люминесценцию соответствующего спектрального диапазона. В кинескопах, используемых для мониторов, в основном применяются два вида люминофорных элементов – круглой формы и в виде полос.

Люминофорные элементы светятся под действием попадающих на них электронов. В кинескопе формируются три электронных пучка – каждый на свой цвет. Пучок имеет конечные размеры, поэтому, чтобы он не попадал на края соседних точек люминофора другого цвета и не “подсвечивал” их, применяется теневая маска (Shadow Mask), ограничивающая размеры пучков. Для получения качественного изображения отверстия маски должны быть расположены строго напротив люминофорных элементов, нанесенных на экран. Задача осложняется тем, что диаметр отверстий составляет всего около 1,15 мм (ширина полос приблизительно 0,08 мм). В процессе работы часть мощности пучков поглощается теневой маской, приводя к ее тепловой деформации и ухудшению совмещения маски и люминофора. Для уменьшения этого эффекта в современных кинескопах применяются маски из специального железоникелевого сплава – инвара (от латинского invariabilis – неизменный), обладающего малым коэффициентом теплового расширения. Материал маски обычно указывается в паспортных данных.

В зависимости от того, люминофорные элементы применяются в кинескопе, по форме размещения элементов разного вида различают дельтовидные теневые маски и щелевые. В кинескопах с люминофорными элементами в виде полос теневая маска представляет собой решетку из тонких вертикально натянутых проволочек, поэтому ее называют апертурной решеткой. Кинескоп с апертурной решеткой был запатентован фирмой Sony, выпускающей ЭЛТ Trinitron. Для уменьшения колебаний решетки проволочки скреплены горизонтальными демпфирующими нитями. На кинескопах размером 15 дюймов используется одна нить, на 17 и более –две. Эти нити дают на экране тонкие тени, слегка заметные при работе. Некоторые пользователи видят в этом недостаток трубок Trinitron, однако, есть и такие, кто использует эти естественные “линейки” с пользой, например для выравнивания элементов при графических работах. Срок действия патента Sony уже истек, поэтому сейчас трубки с апертурной решеткой выпускают также компания Mitsubishi (Diamondtron) и Panasonic (17 дюймов ЭЛТ PanaFlat). Кроме того, фирма Sony выпускает кинескопы SonicTron с шагом сетки 0,26 мм, которыми оснащаются мониторы компании ViewSonic.
На некоторых моделях 14-дюймовых мониторов и на многих телевизионных кинескопах применяются прямоугольные люминофорные элементы, однако они не позволяют получить хорошее качество изображения, так как электронный пучок имеет все же не прямоугольное сечение. Разрабатываются кинескопы, отверстия теневой маски которых имеют эллиптическую форму (кинескопы CromaClear фирмы NEC). Это позволяет получить эффективное соотношение разрешений по вертикали и горизонтали, что будет понятно из дальнейшего рассмотрения. По утверждениям разработчиков, такие меры создают более резкое изображение, чем в масках с круглыми отверстиями.

ЭЛТ-монитор CRT — Cathode Ray Tube

Самым важным элементом монитора является кинескоп, называемый также электронно-лучевой трубкой. Кинескоп состоит из герметичной стеклянной трубки, внутри которой находится вакуум. Один из концов трубки узкий и длинный — это горловина, а другой — широкий и достаточно плоский — это экран. С широкой стороны внутренняя часть стекла трубки покрыта люминофором. Люминофор — это вещество, которое испускает свет при бомбардировке его заряженными частицами. Для создания изображения используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.

Поток электронов может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы, которая состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а другие две — в вертикальной.

После поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему. В результате электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, то есть поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе.

Известно, что глаза человека реагируют на основные цвета: красный, зеленый и синий и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов. Эти элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.

Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, обеспечивающая дискретность (растровость) изображения. Теневая маска — это самый распространенный тип масок, она применяется со времени изобретения первых цветных кинескопов.

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Этот материал имеет предельно низкий коэффициент теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях.

Есть еще один вид трубок, в которых используется апертурная решетка. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов. Маска представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний.

Щелевая маска представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов.

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии