Изготовление плазменного резака из инвертора своими руками

Конструкция

Конструкция плазменного резака состоит из следующих компонент:

  1. Плазмотрон, предназначенный для формирования плазменной струи. Имеет сложную конструкцию, изготавливается из тугоплавкого металла. Требуется подбор таких параметров: диаметра сопла, длины резака, угла подачи сжатого воздуха в область формирования плазмы.
  2. Источник питания предназначен для поджига дуги. Должен иметь стабильные параметры по току и напряжению. Подбирают в зависимости от максимальной величины выходного тока, габаритов, размеров и веса.
  3. Осциллятор, используемый для упрощения розжига дуги, стабилизации её горения. Имеет простую схему, поэтому может быть собран самостоятельно либо приобретён в сборе.
  4. Компрессор для создания потока воздуха, подаваемого для охлаждения горелки, формирования направленного потока плазмы. Подходит практически любая модель. Чтобы не попала влага, потребуется установить осушитель.
  5. Медный кабель с зажимом на конце для подключения массы.
  6. Кабель-шланг, предназначенный для подключения горелки и поджига электрической дуги, а также для подачи сжатого воздуха. Может быть изготовлен путём укладки кабеля и кислородной трубки внутри поливочной гибкой трубки.

Необходимые комплектующие

Перед сборкой резака потребуется подготовить следующие комплектующие:

  • источник питания;
  • резак или плазмотрон;
  • компрессор с осушителем или фильтром;
  • осциллятор;
  • электроды;
  • шланги;
  • кабели.

Подбор блока питания

Выбор источника электроэнергии для плазменной установки выполняется с учётом следующих критериев:

  • максимальной толщины и типа разрезаемого металла;
  • длительности проведения работ, времени горения дуги;
  • требований к параметрам плазмы;
  • стабильности тока, напряжения питающей сети;
  • требований безопасности;
  • необходимости расширения функциональности плазмореза.


Блок питания

Плазмотрон

Поскольку плазмотрон используется для генерации плазмы, к подбору его параметров нужно подходить грамотно. Важные параметры:

  • стойкость к рабочим температурам;
  • удобство пуска, настройки, остановки работы оборудования;
  • небольшой вес, компактные размеры;
  • срок службы;
  • требования к обслуживанию;
  • ремонтопригодность.

По типу стабилизации дуги плазмотроны бывают газового, водяного и магнитного вида.

При работе важно своевременно заменять электроды, чтобы максимально продлить срок службы сопла. Понять необходимость данной процедуры можно по ухудшению качества резки: нарушение точности, появлению поверхностных волн

Важно не перегревать плазмотрон, поскольку это может повлечь серьёзные поломки.

Для создания плазмотрона потребуются следующие детали:

  • рукоятка из материала с низкой теплопроводностью, в которой есть отверстия под провода для электрода, трубок для газа;
  • пусковая кнопка;
  • подходящие по параметрам электроды;
  • сопло нужного диаметра;
  • изолятор;
  • пружина для соблюдения расстояния от сопла до разрезаемого металла;
  • наконечник с защитой от брызг расплавленного металла;
  • завихритель потока;
  • специальная насадка.

Осциллятор

Осциллятор применяется для выработки токов высокой частоты. Работает в режимах коротких импульсов или постоянного горения дуги. Предназначен для быстрого запуска плазмореза.

Конструктивно состоит из следующих элементов:

  • выпрямителя;
  • конденсаторов;
  • блока питания;
  • управляющей микросхемы;
  • импульсного модуля;
  • повышающего трансформатора;
  • контроллера напряжения.

Электроды

Выбор электродов определяется на основе рабочих режимов резки, типа металла, требований к качеству работ. Для эксплуатации в небольших мастерских рекомендуется приобретать гафниевые электроды. Бериллиевые или ториевые могут формировать токсичные соединения.

Компрессор и кабель шланги

Модель компрессора подбирается на основе его технических параметров, требований к конструкции плазмореза. Он используется для создания воздушных потоков внутри рабочих каналов, охлаждения компонентов оборудования при непрерывной работе. Для регулировки подачи воздуха на выходе из компрессора устанавливается электрический клапан.

Внутри шлангов размещают кабель, трубку для сжатого воздуха. На массовом кабеле располагают щуп для обеспечения контакта с разрезаемым металлом и поджига стабильной дуги.

Схема плазменного аппарата

Чтобы сделать плазменную сварку своими руками, чертежи являются одним из основных моментов, так как в них содержатся все основные конструкционные элементы. Вне зависимости от того, из каких деталей вы собираетесь делать технику, схема помогает определить самые мелкие компоненты, которые должны туда входить. Здесь приведена силовая схема плазмотрона:

 Схема плазмотрона — силовая часть

Плазморез является основной особенностью таких установок, так как в нем образуется плазма. В нем же заключается и основная сложность, когда создается плазменная сварка своими руками из инвертора. Здесь представлена схема управления данным устройством:

 Схема плазмотрона — система управления

Оборудование для сбора плазменного аппарата

Для создания работоспособного аппарата понадобится:

  • Инверторный сварочный аппарат, к примеру, для аргонодуговой сварки;
  • Баллон с аргоном;
  • Редуктор для баллона;
  • Сопло с электродом из вольфрама;
  • Фторопластовая трубка;
  • Пруток из молибдена или тантала;
  • Медные трубки;
  • Балласт электронный;
  • Проводка;
  • Хомуты;
  • Листовая медь толщиной до 2 мм;
  • Клеммы;
  • Гермоввод;
  • Резиновый шланг;
  • Выпрямительный блок питания.

Процесс сборки

Особенности плазменной сварки требуют точного проведения процедур, чтобы в итоге получить надежное и безопасное устройство. Сопло для данного аппарата вытачивается из меди, так как в ином случае его придется часто менять. Вместо меди можно применять титан, который прослужит намного дольше. Размер отверстия в сопле выбирается опытным путем. Как правило, начинают с минимальных значений в 0,5 мм и постепенно доходят до 2 мм.

Размер конусного зазора между анодом на сопле и вольфрамовым катодом должен составлять до 3 мм. Сопло вкручивают в полную рубашку охлаждения. Она должна быть соединена с центральным электродом, для чего используется фторопластовый изолятор. Для охлаждения в рубашке используется жидкость, которая должна постоянно циркулировать жидкость или антифриз. Данное устройство состоит из двух полых медных труб. Диаметр внутренней составляет около 2 см. Она находится на переднем конце внешней трубки, диаметр которой составляет 5 см, а длина около 8 см.

Положительный заряд на эту систему будет подаваться на специальную клемму, которую также следует припаять к корпусу. На внутренней трубе создается резьба, куда ставится потом съемное сопло, производимое из термостойких материалов. Внутренняя резьба нарезается также на выдвинутом конце  наружной трубы. К ней привинчивается фторопластовое кольцо для изоляции. На нем располагается кольцо центрального электрода.

Труба подачи аргона впивается через стену трубы между изолятором и рубашкой охлаждения. Для питания системы используется насос на 12В. Положительный заряд подается на систему с основного источника питания. Балласт служит для ограничения тока в системе. Чтобы возбудить дежурную дугу соплом или вольфрамовым электродом требуется использовать осциллятор, или если его не имеется, то все можно проделать обычным контактным способом.

 

Заключение

Плазменная сварка является очень сложным процессом и только внешне она кажется очень схожей с остальными. Основная сложность заключается в самой технике, так как для строительства ее своими руками нужен опыт, тщательность и очень надежный подход к соединению всех компонентов, их подбору и так далее. Плазмотрон работает с высокими температурами и газами, которые могут привести к взрыву

Таким образом, технике безопасности стоит отдавать максимальное внимание. Самым легким моментом этого дела являются все вопросы, касающиеся источника питания

Сборка из готовых комплектуюущих

Необходимо подключить сопло плазмореза к инвертору и компрессору. Осуществляется это посредством так называемого кабель-шлангового пакета. Оптимальным будет использовать для этих целей специальные зажимы и клемы, которые легко фиксируются и также легко снимаются.

Перед тем как начинается сборка, необходимо окончательно убедиться в совместимости всех комплектующих.

Порядок сборки достаточно прост:

  • Инвертор посредством электрического кабеля соединяется с электродом плазмореза.
  • Компрессор с помощью специального шланга присоединяется к рабочей камере плазмореза.

Практические рекомендации

Даже при сборке из уже готовых комплектующих цена конечного продукта будет на несколько порядков меньше, чем если покупать готовый плазменный резак. После того как аппарат будет собран и станок будет готов к работе, нужно позаботиться о расходных материалах и некоторых аспектах эксплуатации устройства.

    Необходимо приобрести заранее несколько комплектов резиновых прокладок, которые используются при подключении шланга подачи сжатого воздуха.
    Самой быстроразрушающейся деталью в плазменном резаке является медное сопло. Кроме того, толщина реза напрямую зависит от диаметра отверстия в сопле. Поэтому комплект медных сопел с разным диаметром выходного отверстия должен обязательно быть в запасе.
    Необходимо достаточно точно определиться с задачами, которые стоят перед будущим плазморезом, и исходя из этого заранее подобрать соответствующую мощность инвертора. Учитывая высокую цену на инверторы, будет очень накладно эксплуатировать плазморез, обладающий излишней мощностью.
    Необходимо всегда помнить, что температура рабочего участка плазмы составляет 20000−30000 градусов

    Это крайне опасно и может привести к ЧП, если работающий плазморез окажется в руках несмышлёного ребёнка или психически невменяемого человека.
    Крайне важно в процессе работы правильное образование вихревого потока. В противном случае во время работы плазменной горелки может образоваться так называемая двойная дуга, что может привести к разрушению устройства

    Поэтому очень важно использовать плазменные резаки, изготовленные в заводских условиях, с соблюдением всех необходимых технических стандартов.

О том, как выбрать плазморез можно прочитать здесь.
О том, как выбрать плазморез можно прочитать здесь.
О том, как выбрать плазморез можно прочитать здесь.

Плазморез своими руками из инвертора

Основная сложность – изготовление собственно плазмотрона. Точнее – режущего сопла.

Металлы, из которых вытачиваются наконечники, к доступным не относятся. Поэтому есть смысл приобрести готовое сопло. Патрубок для подключения шланга, работающего под давлением – должен быть установлен промышленным путем.

Рабочая область имеет температуру в несколько тысяч градусов, поэтому любой доступный в домашних условиях способ сварки, не подойдет. Трубка просто отвалится. А вот готовую режущую готовку не составит труда разместить в рукоятке, которая рассчитана на высокие температуры. Если вы делаете плазморез из инвертора – такая рукоять входит в комплект.

Также необходимо всегда иметь запас расходных материалов. Сопло, из какого бы прочного металла оно не было сделано, изнашивается довольно быстро. Поэтому комплект из 5-10 насадок и катодов не помешает. К тому же лучше иметь несколько различных диаметров сопла, для работы с разными металлами.

Токопроводящий кабель от инвертора объединяют со шлангом для подачи сжатого воздуха. Вся конструкция должна составлять единое целое, иначе можно просто запутаться в шлангах во время работы.

В качестве корпуса для сопла хорошо использовать керамические втулки. Это и диэлектрик, и охладитель, неплохо рассеивающий лишнее тепло.

Самодельный плазморез, в отличие от обычного сварочника нуждается в управлении поджигом дежурной плазмы. Для этого в конструкцию готового инвертора встраивается осциллятор, который дает первичную искру для запала.

После появления рабочей плазмы его необходимо отключать. Для этого используется схема, работающая при помощи реле. Как только ток достигает рабочей величины – осциллятор выключается и дуга работает от основного (нагрузочного) выхода инвертора.

В остальном инвертор остается без изменений. Мощности хватает для обеспечения горелки при толщине металла до 20 мм. Обычно большую толщину в домашних условиях не обрабатывают.

Самодельный плазморез не может обойтись без компрессора. Для образования стабильной рабочей плазмы достаточно давления 2-2,5 атмосферы. Такую величину обеспечит даже обычный автомобильный компрессор.

Вся проблема в том, что во время работы расходуется огромное количество воздуха, и компрессор не может восполнить его с нужной скоростью. Если давление упадет – рабочая плазменная дуга разрушится, и резать металл будет невозможно.

Вопрос решается установкой воздушного ресивера. Он служит аккумулятором для накопления давления. Кратковременные интервалы работы резака не успевают снизить давление, а во время перерывов компрессор пополняет запас сжатого воздуха.

Можно использовать баллоны тормозной системы от грузовиков. Например – от «Камаза». Однако более практичным будет приобретение стандартного комплекта компрессора с ресивером.

Только обязательно оснастите комплект редуктором. Необходимо иметь возможность выставлять и поддерживать постоянное давление. Покупка компрессора не будет обременительной для бюджета, если использовать его для других целей. Например, для покраски с помощью краскопульта.

С помощью подобной самоделки можно резать как тонкую жесть толщиной 1 мм, так и толстые стальные пластины. Если работать по шаблону – можно вырезать качественные заготовки не хуже станка с ЧПУ.

В этом видео подробности сборки самодельного плазмореза.

Как осуществляете плазменная резка

Резка металлов с помощью плазмы – наиболее современный способ металлообработки. Разбираясь, как работает плазморез, нужно знать физические основы этого процесса. При включении аппарата в его рабочем органе – плазмотроне – возникает дуговой разряд между центральным электродом и соплом. Температура этой дуги достигает 30 тыс. градусов. Путём продувания через сопло плазмотрона газа образуется раскалённая струя плазмы со скоростью истечения примерно 1500 метров в секунду. Такой струёй любой металл почти мгновенно оплавляется и выдувается из зоны реза.

Луч плазмы получают в результате начального короткого замыкания, возникающего между центральным вольфрамовым стержнем и корпусом сопла. В большинстве аппаратов для плазменной резки это замыкание в виде искрового разряда создаётся специальным устройством – осциллятором. В этом и заключается основной принцип работы плазменного резака.

Через плазмотрон в процессе резки могут продуваться два типа газов – малоактивные и активные. К малоактивным относятся водород, аргон и азот. Активные же газы для плазменной резки металлов – это кислород или просто воздух. Кислородная плазменная струя способна резать металлы мягких типов или низколегированные. Использование этого газа в качестве рабочего даёт возможность быстро оплавлять железо без образования каких-либо заусенец. При этом не происходи улетучивание железа из районов, прилегающих к зоне резки. А вот использование атмосферного воздуха для образования плазменной струи хоть и дешевле, но резать металл толще 20 мм им не получится.

Если говорить о достоинствах и недостатках плазменной резки металлов, то лучше начать с достоинств.

Перечислим их:

  • возможность этим способом производить обработку любых металлов;
  • большая скорость резки для средних по толщине и тонких деталей;
  • минимальная площадь термического воздействия резки на прилегающую зону металла, что позволяет избегать тепловых деформаций и других термических влияний;
  • высокое качество получаемых резов;
  • когда аппарат не требует установки баллонов со сжатым кислородом или воздухом, а обеспечивается газовым напором с помощью компрессора, плазменная технология оказывается абсолютно безопасной;
  • плазменным способом можно выполнять поверхностные гравировки и фигурную резку металлов по схемам разной степени сложности.

Но одними достоинствами никакие новые технологические приёмы не могут характеризоваться.

Есть недостатки и у плазменной резки металлов:

  • цена плазменного резака выше, чем стоимость аналогичного газового или механического оборудования для резки металлов;
  • резка металлов плазменным способом ограничена толщиной в 100 мм;
  • истекающий из сопла раскалённый поток ионизированного газа (плазмы) создаёт повышенный шумовой фон, что вынуждает оператора станка использовать в работе наушники;
  • для обслуживания плазменных установок требуются специалисты, прошедшие квалификационное обучение.

Плазменным способом можно эффективно вести обработку металлов с толщиной и свыше 100 мм. Плазменная резка в отличие от газокислородной не требует постоянного контроля интенсивности горения газовой струи. Этим обуславливается её частое применение с сферах узкой специализации металлообработки. С помощью плазмы гораздо легче выполнят нелинейную резку, чем газокислородными аппаратами.

Принцип действия

Работа плазмореза основана на поджиге электрической дуги, в которую подаётся под давлением инертный газ, прогреваемый в замкнутом объёме до состояния плазмы, а затем поступающий прямо на поверхность разрезаемого металла. Направленная струя газа формируется в результате его перегрева внутри закрытой ёмкости при создании избыточного давления.

Когда электроды прикладываются к поверхности металла, создаётся вторая дуга, мощность которой превышает первоначальную в несколько раз. В ней плазменный поток ускоряется до 1,5 км/с. Комбинация высокой температуры дуги с потоком плазмы позволяет резать металлические заготовки, толщина разреза которых зависит от параметров сопла.

В плазморезах косвенного действия создаётся только плазменная направленная струя, способная резать не только металлы, но и непроводящие ток материалы. Однако их самостоятельное изготовление сложно, так как требуется точный расчёт параметров конструкции, подбора характеристик, настройки.

Материалы для плазменной резки

Плазменная обработка металлов применяется в самых различных сферах человеческой деятельности, на такое разнообразие использования и рассчитано оборудование для плазменной резки его производителями. Главный параметр любого такого аппарата – сила тока в плазмотроне. От выбора устройства плазмореза напрямую зависит и максимальная толщина резки, и производительность работы оборудования. По мере увеличения силы тока мощнее становится плазменная струя, она быстрее нагревает металл и заставляет переходить его в расплавленное состояние.

Например, используя в работе ручной плазменный резак с током примерно в 40 А, можно выполнять резку заготовок из стали толщиной не более 12 мм. А вот купив плазморез Сварог, можно резать черно-белую сталь толщиной уже до 25 мм. Но и это далеко не предел возможностей плазменной резки металлов. Промышленность России и других стран мира выпускает оборудование для плазменного раскроя металлических изделий, толщина которых измеряется десятками сантиметров (до 200 мм и более). Конечно, для этого требуется сложное и мощное техническое обеспечение, но как раз в резке изделий большой толщины плазменному способу и нет конкурентов. Результаты работы, которые достигаются при резке толстых металлических деталей, значительно превосходят по качеству и производительности все существующие другие способы.

Схема работы плазмореза

Плазморез из сварочного инвертора позволяет данному виду техники выполнять свое основное предназначение, а именно, подавать сильно разогретый воздух на металлические изделия. Температура может достигать более тысячи градусов, что приводит к нагреву кислорода. В результате нагрева он поступает на поверхность металлического изделия под давлением. Это приводит к разрезанию металла. Чтобы ускорить данную процедуру, следует обеспечить дополнительную ионизацию среды электрическим током.

Схема плазменного инвертора, его силовой части выглядит следующим образом:

 Схема силовой части плазмореза

Схема плазменного инвертора (управления аппаратом) имеет следующий вид:

 Схема плазменного инвертора

Плазмотрон или резак

Основными компонентами плазморезки являются: два электрода, изолятор, разделяющий катодный и анодный узлы, и камера завихрения газовой смеси.

  • Один из электродов является основным и изготавливается из тугоплавкого металла типа тория, циркония или бериллия. Но все эти металлы, точнее, продукты их взаимодействия с высокими температурами, являются крайне вредными для здоровья. Поэтому оптимальным вариантом будет изготовление электрода из другого тугоплавкого метала — гафния, который абсолютно безвреден.
  • Вторым электродом является сопло. Оно, как правило, изготавливается из меди. В сопле имеется очень тонкое отверстие, через которое раскалённый газ вырывается наружу. Периодически этот элемент требует своей замены в силу того, что постоянно находится в зоне запредельно высоких температур. Поэтому оптимальным является иметь не одно сопло, чтобы в случае необходимости можно было быстро заменить вышедшее из строя.
  • Газ под давлением подаётся в камеру завихрения через прямой патрубок, расположенный сверху или сбоку от камеры. Предварительно нагнетается необходимое давление с помощью компрессора.

Принцип работы плазмотрона

 Под давлением газ поступает в пространство между соплом и электродом. В момент включения осциллятора, в результате возникновения высокочастотного импульсного тока, между двумя электродами возникает электрическая дуга. Эта дуга носит название предварительной, и её задача — разогреть газ, находящийся в камере сгорания. Температура разогретого газа в камере относительно невысокая — порядка 5000−7000 градусов.

После того как предварительная дуга заполнит собой всё сопло, с помощью компрессора увеличивают давление подаваемого сжатого воздуха, в результате начинает происходить ионизация газа. Как следствие этого, газ расширяется в объёме, становится сверхпроводимым и разогревается до запредельно высоких температур порядка 20000−30000 градусов. Иными словами, газ превращается с плазму.

Под большим давлением плазма вырывается через узкое отверстие сопла наружу. В момент соприкосновения потока плазмы с поверхностью металла возникает вторая дуга — основная, или классическая. Роль второго электрода в этом случае берёт на себя сама плазма. Плазменная дуга мгновенно расплавляет металл в точке контакта. Под сильным напором сжатого воздуха расплавленный металл мгновенно выдувается, и в результате остаётся чистый рез.

Существуют два базовых условия, при соблюдении которых получается качественная резка с помощью плазмы:

  • Ток, подаваемый на электрод, должен обладать силой не менее 250 А.
  • Сжатый воздух подаётся в камеру сгорания со скоростью не менее 800−900 м/с.

Сложность изготовления плазмотрона

 Схемы, чертежи для изготовления плазмореза своими руками очень легко найти в Интернете. Но плазменный резак очень сложно устроен и, кроме того, требует очень тонких настроек перед непосредственной эксплуатацией. Несмотря на обилие в Интернете соответствующих рекомендаций, чертежей и видеороликов, сделать плазмотрон дома технически крайне сложно. А если учесть, что затея эта ещё и крайне опасная для здоровья, то лучше от неё совсем отказаться и воспользоваться услугами «Али Экспресса» или ближайшего специализированного магазина.

Самодельный плазморез

 Сборка плазмореза в домашних условиях очень напоминает собирание конструктора. Дело в том, что все без исключения составные элементы плазмореза относятся к достаточно сложным технологическим изделиям. Изготовление этих элементов в домашних условиях с нуля не только требует очень глубоких познаний в данном предмете и соответствующего дорогостоящего оборудования, но и является небезопасным в плане здоровья домашнего мастера.

Например, температура внутри камеры сгорания плазмотрона составляет порядка 20000−30000 градусов. Поэтому лучше купить элементы, из которых состоит плазморез, уже готовыми, с гарантией высокой надёжности, чем пытаться сделать дома из подручных средств и тем самым подвергать опасности не только свою жизнь, но и жизнь своих близких.

Совсем ничего не понимающим в металлообработке необходимо знать хотя бы элементарные вещи, например, то, что лазерный резак по металлу и плазменный резак по металлу — это не одно и то же.

Составляющие элементы

Любой плазморез состоит из следующих элементов:

  • Источник постоянного тока. Для этих целей можно использовать либо сварочный трансформатор, либо сварочный инвертор. О преимуществах и недостатках того и другого поговорим ниже.
  • Осциллятор. Выполняет роль стартера, который запускает предварительную дугу. Оптимальный вариант — осциллятор заводского изготовления марки ВСД-02. Как самостоятельно изготовить осциллятор читайте здесь.
  • Источник сжатого воздуха. Компрессор мощностью 2.00−3.00 атм и выше, в зависимости от мощности аппарата.
  • Резак, он же плазмотрон. Приобретается в готовом виде в соответствующем магазине. В крайнем случае можно взять резак для аргонной сварки и путём незначительных доработок переделать его в плазмотрон.
  • Комплект соответствующих шлангов для подвода газовой смеси к камере сгорания.
  • Комплект электрических кабелей для подвода электричества к трансформатору.

Устройство плазмореза

Блок питания.

Он может быть сконструирован по-разному. Трансформатор имеет большие габариты и массу, но позволяет резать более толстые заготовки.

Потребление электроэнергии выше, это необходимо учитывать при выборе точки подключения. Такие блоки питания мало чувствительны к перепадам входного напряжения.

Инверторы экономичны, у них выше КПД. Дуга, полученная с помощью такого источника питания, горит стабильнее, что положительно влияет на качество реза.

Инвертор легче, и занимает меньше места в сравнение с трансформатором. Это делает прибор мобильным, что позволяет работать в труднодоступных местах.

Однако есть и недостатки. Толщина разрезаемой заготовки ограничена.

Плазмотрон.

Рабочая головка, с помощью которой производится резка.

Схема плазменного резака:

На электрод подается напряжение от инвертора для возбуждения плазменной дуги. Выбирается тугоплавкий металл, с образованием прочного окисла.

Например, цирконий, гафний или бериллий. Сопло служит для формирования плазменной струи. В зону образования плазмы подается сжатый воздух, который одновременно придает форму плазменной струе и охлаждает электрод.

Параметры сопла определяют характеристики реза. От диаметра зависит скорость разреза заготовки и размер прожигаемой щели. Величина отверстия на типовом резаке обычно равняется 3 мм. От длины напрямую зависит качество обработки. Однако слишком длинное сопло сильно нагревается и быстро изнашивается.

Охладитель (он же изолятор) частично отводит тепло от сопла, продлевая его ресурс. В рабочем режиме плазма достигает температуры более 25000°.

Поскольку плазма состоит не только из потока заряженных частиц, а еще и из воздуха – он должен подаваться в больших количествах. Этим вопросом заведует компрессор. Если рабочий ток не превышает пары сотен ампер, используется обычный воздух из атмосферы. Толщина разрезаемого металла менее 5 см.

В промышленных резаках выше сила тока и применяются различные газы: аргон, гелий, азот и даже кислород с водородом.

По управляющему комплекту шланг-кабель поступает как электрический ток, так и сжатый воздух (газ).

Подробное описание как сделать плазмотрон для плазмореза в этом видео.

Как работает плазморез

После нажатия управляющей клавиши, ток большой величины и частоты зажигает (в буквальном смысле) электрическую дугу между соплом и электродом. Температура в наконечнике поднимается до 7000° С.

Когда дежурная дуга заполняет все сопло, подается сжатый воздух (газ). От воздействия высокой температуры газ ионизируется, и становится проводником. Фактически возникает короткое замыкание через воздух, который превращается в газообразный электрод.

В этот момент из сопла вырывается сформированная конусом плазма с температурой более 20000° С. При таких условиях электропроводность раскаленного воздуха внутри плазменного потока, равна проводимости металла.

При соприкосновении плазмы с металлом заготовки, возникает классическая дуга, как при электродной сварке. В роли электрода выступает плазма. Дуга моментально нагревает металл в точке соприкосновения. Размер пятна равен диаметру сопла. Превратившийся в жидкость металл, моментально выдувается под напором сжатого воздуха. Происходит резка заготовки.

Важно! При работе с плазморезом требуется определенная сноровка. Двигаться необходимо равномерно, с правильно заданной скоростью

Если головку вести слишком медленно – рез получится не таким ровным, и будет слишком широким. Нагревшиеся края металла станут корявыми. Быстрое перемещение не позволит качественно выдувать расплавленный металл, и рез потеряет непрерывность.

Этого недостатка лишены станки плазморезы, в которых сопло управляется механически.

Однако стоимость таких устройств слишком высока. Самостоятельное изготовление затруднено, по причине дороговизны комплектующих. Мы рассмотрим возможность изготовления ручного плазменного резака со средними параметрами.

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии