Технологии создания дисплеев виды матриц и их особенности

Введение в управление жидкими кристаллами

Развитие жидких кристаллов

Жидкие кристаллы были открыты более 100 лет назад. Их внешнее состояние при нагревании может изменяться от твердого до жидкокристаллического и даже полностью переходить в жидкую форму при дальнейшем повышении температуры. За прошедшие годы были предприняты большие усилия для совершенствования жидких кристаллов, и результатом явилось их широкое использование в электронных калькуляторах и цифровых часах. В настоящее время цветные ЖКИ имеют еще больший диапазон применений: сотовые телефоны, персональные компьютеры и телевизоры, обладающие малой толщиной, малой потребляемой мощностью, высоким разрешением и яркостью. Кроме того, в обозримом будущем прогнозируется впечатляющий рост востребованности панелей ЖКИ, связанный с быстро развивающейся популярностью плоских дисплеев.

 Рис.6 Реакция ЖК- вещества на приложение внешнего поля

Как работают жидкие кристаллы

При подаче напряжения к двум электродам ЖКИ молекулы жидких кристаллов «раскручиваются» тем сильнее, чем выше приложенный потенциал (рис.6). Чувствительность к электрическому напряжению — одна из основных особенностей жидких кристаллов.
На рис.7 показан нормальный «белый» режим работы ЖКИ. Свет может проходить через слои жидких кристаллов, пока к ним не приложено никакой разности потенциалов, и молекулы жидких кристаллов будут изменять ориентацию световой плоскости в соответствии с их собственными углами. Однако при приложении напряжения жидкокристаллические молекулы будут «раскручивать» и «выпрямлять» свет, направляющийся к верхнему поляризационному фильтру. Поэтому свет не сможет пройти сквозь активную область ЖКИ, и эта область будет темнее окружающих зон.

 Рис.7 Прохождение света через ЖКИ

Метод управления жидкими кристаллами

На рис.8 показана схема управления жидкими кристаллами. В пределах одного выбранного периода времени переключатель замыкается и на жидкие кристаллы подается входное напряжение, что приводит к изменению ориентации жидкокристаллических молекул. Когда переключатель выключатся, определенный заряд сохраняется в Clc, при этом величина напряжения на Clc будет со временем понижаться. Для расширения возможностей хранения заряда можно рассмотреть добавление параллельно Clс запоминающего конденсатора Cst.

 Рис.8 Схема управления жидкими кристаллами

Запоминающий конденсатор

Фактически управление жидкими кристаллами должно производиться переменным напряжением. Для активации ЖКИ напряжение подается только при включенном переключателе, после чего переключатель немедленно отключается. В некоторых случаях напряжение на жидких кристаллах будет падать из-за наличия утечек. Для предотвращения такой ситуации мы можем использовать один параллельный конденсатор для компенсации напряжения утечки. При увеличении емкости Cst форма напряжения на нем приближается к меандру (рис.9).

 Рис.9 Компенсирующее действие запоминающего конденсатора

Как работает жидкокристаллический индикатор на TFT

TFT выполняет роль переключателя. Вывод затвора TFT подключен к линии сканирования, вывод истока подключен к линии данных, а вывод стока соединен с Clc и Cst. Когда затвор активизирован (выбран на линии сканирования), канал TFT открывается и данные об изображении будут записаны в Clc и Cst. Когда затвор не выбран, канал TFT закрыт (рис.10).

 Рис.10 Схема работы ячейки TFT-ЖКИ

Основа структуры TFT-ЖКИ

Основа структуры TFT-ЖКИ содержит жидкие кристаллы, два поляризатора и стеклянные пластины: верхняя подложка цветового фильтра и нижняя подложка массива TFT. Жидкокристаллическое вещество впрыскивается между этими двумя стеклянными пластинами (рис.11).

 Рис.11 Структура TFT-ЖКИ

Регулирование потока света

Управляя величиной входного напряжения, подаваемого на жидкие кристаллы, можно изменять расположение молекул, их ориентацию и направление, что приведет к соответствующему изменению объема светового потока, проходящего через жидкие кристаллы (рис.12).

 Рис.12 Регулирование светового потока

Формирование цвета

При прохождении светового потока через цветовой фильтр, интегрированный в верхнее цветное стекло, формируется каждый отдельный пиксель изображения путем смешивания базовых цветовых элементов RGB (R-красный, G-зеленый и B-голубой). Если красный, зеленый и голубой элементы пикселя выбраны в равной пропорции, будет сформирован белый свет. Путем регулировки соотношения этих трех элементов получают необходимое количество разнообразных цветов.

Рис.13 Формирование цвета

Главная —
Микросхемы —
DOC —
ЖКИ —
Источники питания —
Электромеханика —
Интерфейсы —
Программы —
Применения —
Статьи

Недостатки AMOLED-матриц

Свойственны AMOLED-матрицам и недостатки, причем виновник большинства бед один. Это – синие светодиоды. Освоение их производства дается сложнее, а по качеству они уступают зеленым и красным.

Синева или ШИМ. Выбирая смартфон с AMOLED экраном, приходится выбирать между широтно-импульсной регулировкой яркости и голубизной светлых тонов. Все из-за того, что при непрерывном свечении синие субпиксели воспринимаются сильнее, чем красные и зеленые. Исправить это можно с помощью использования ШИМ-регулировки яркости, но тогда всплывает другой недостаток. На максимальной яркости экрана ШИМ нет или частота регулировки достигает около 250 Гц. Этот показатель находится на границе восприятия и почти не влияет на глаза. А вот при снижении уровня подсветки – снижается и частота ШИМ, в итоге на низких уровнях мерцания с частотой около 60 Гц могут приводить к усталости глаз.

Выгорание синего. Тут тоже проблема в синих диодах. Их срок службы меньше, чем зеленых и красных, поэтому со временем возможно искажение цветопередачи. Экран уходит в желтизну, баланс белого сдвигается в сторону теплых тонов, общая цветопередача ухудшается.

Эффект памяти. Так как миниатюрные светодиоды склонны к выгоранию, места на экране, которые отображали яркую статичную картинку (например, часы или индикатор сети светлого цвета), со временем могут терять яркость. В результате даже если элемент не отображается, в этих местах виднеется силуэт этого элемента.

 Смартфон очень долго находился на витрине, отображая постоянно надписи, от которых остались розовые тени.

PenTile. Структура PenTile не является фундаментальным минусом всех панелей AMOLED, но пока характерна для большинства из них. При такой структуре матрица содержит неодинаковое число красных, зеленых и синих субпикселей (у Samsung синих вдвое меньше, у LG – вдвое больше). Основной мотив использования PenTile – желание компенсировать недостатки синих LED. Однако побочным эффектом данного решения становится снижение четкости картинки, особенно заметное в VR-гарнитурах.

 PenTile под микроскопом. Фото: Alvinemman.com

Как показал анализ плюсов и минусов, однозначно сказать, что лучше, IPS или AMOLED, нельзя. Обе технологии обладают преимуществами и недостатками, при этом чем дешевле смартфон (и его экран) – тем меньше заметны плюсы и сильнее выражены минусы. То есть, у условных Samsung Galaxy J5 (2016) и Doogee Mix, оснащенных экранами AMOLED, PenTile и ШИМ будут видны сильнее, чем у Samsung Galaxy S8.

С учетом всех особенностей обоих типов матриц можно отметить, что IPS с высоким разрешением лучше, если вас интересует VR и нужна максимальная четкость картинки. Ведь у AMOLED комфортному восприятию виртуальной реальности немного препятствует PenTile, и ШИМ подсветки пока нивелирует мгновенную скорость реакции. Также IPS лучше, если вам приходится больше работать со светлыми тонами (веб-серфинг, мессенджеры).

За экранами AMOLED будущее, но пока технология не идеальна. Однако можно смело покупать смартфон со светодиодным экраном, особенно если это флагман. Яркость, контрастность, глубокий черный и экономия энергии при показе темных тонов способны перекрыть все минусы OLED.

, ,

VA матрицы PVA и MVA

VA (Vertical Alignment) — данную технологию, разработанную Fujitsu, можно рассматривать как компромисс между TN и IPS матрицами. В матрицах VA кристаллы в выключенном состоянии расположены перпендикулярно плоскости экрана. Соответственно черный цвет обеспечивается максимально чистый и глубокий, но при повороте матрицы относительно направления взгляда, кристаллы будут видны не одинаково. Для решения проблемы применяется мультидоменная структура. Технология Multi-Domain Vertical Alignment (MVA) предусматривает выступы на обкладках, которые определяют направление поворота кристаллов. Если два поддомена поворачивается в противоположных направлениях, то при взгляде сбоку один из них будет темнее, а другой светлее, таким образом для человеческого глаза отклонения взаимно компенсируются. В матрицах PVA, разработанных Samsung нет выступов, и в выключенном состоянии кристаллы строго вертикальны. Для того, чтобы кристаллы соседних субдоменов поворачивались в противоположных направлениях, нижние электроды сдвинуты относительно верхних.

Для уменьшения времени отклика в матрицах Premium MVA и S-PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive. Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS, время отклика немного уступает TN, углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA.

MVA и PVA матрицы обладают отличной контрастностью и углами обзора, но вот с временем отклика дела обстоят похуже – оно растет при уменьшении разницы между конечным и начальным состояниями пиксела. Ранние модели таких мониторов были почти непригодны для динамичных игр, а сейчас они показывают результаты близкие к TN матрицам. Цветопередача *VA матриц, конечно, уступает IPS-матрицам, но остается на высоком уровне. Тем не менее, благодаря высокой контрастности, эти мониторы будут отличным выбором для работы с текстом и фотографией, с чертежной графикой, а также в качестве домашних мониторов.

В заключении могу сказать, что выбор всегда за вами…

Виды дисплеев

Дисплей Retina

Одним из самых последних типов дисплея является дисплей retina. Что это за новшество? С таким дисплеем столкнуться любители дорогих марок телефонов, а именно новой модели Apple iPhone 4. Создатели утверждают, что сетчатка человеческого глаза способна обрабатывать изображение с разрешением 300 точек на расстоянии 30 сантиметров максимально. Другие специалисты утверждают, что глаз способен так же эффективно воспринять изображение с более высоким разрешением. Отличие этого вида дисплея заключается в высоком разрешении с маленьким размером пикселей. Retinaвыполнен по системе IPS и имеет отличные углы обзора.

Дисплей IPS

IPS мониторы были первыми, которые помогли решить некоторые существующие проблемы качества и обзора на экране. Они идеально обеспечивают цветопередачу того или иного изображения. Давайте узнаем их особенности, которые помогут нам понять, что такое IPS дисплей. Уникальность его заключается в том, что кристаллы в ячейках панели располагаются в одной плоскости и всегда параллельны самой панели. Это и создает идеальную визуализацию картинки на мониторе.

Дисплей Tft

Очень широко используется в производстве дисплеев система tft дисплея. Далеко не всем понятно, что такое tft дисплей и чем он отличается от других. Это жидко-кристаллический дисплей, который основан на тонкопленочных транзисторах с активной матрицей. Технология здесь очень высока, ведь на каждый пиксель приходится по три транзистора, отвечающие за разные цвета. Дисплей tft имеет очень много плюсов – это и качественный угол обзора, и короткое время отклика, и отличный контраст. Но зато такой тип потребляет значительно больше энергии, чаще может выходить из строя, т.к. при повреждении хотя бы одного транзистора на экране возникают точки или пятна. Но в целом, такой дисплей очень популярен среди производимых устройств.

Дисплей Qhd

Стоит также отметить qhd дисплей, что это также часто используемый экран в различных моделях телефонов. Эта разновидность отличается также типом матрицы. Разработчики утверждают, что этот дисплей разработан с учетом всех особенностей зрения человека, а точнее его органов, что позволило подобрать самый оптимальный вариант визуализации картинок. В этой технологии, в отличие от tft, нет  пикселей, которые состоят из трех частей, которые отвечают за цвет. Здесь каждый пиксель может служить совокупностью нескольких цветовых точек. Этот тип вызвал неоднозначную реакцию у пользователей.

Вообще технологии постоянно развиваются, для дисплеев продолжают искать варианты, чтобы еще больше усовершенствовать их структуру и функции и возможно скоро изобретут еще более удивительные модели, которые приятно удивят нас.

Преимущества матриц IPS

IPS матрицы являются лучшими среди всех типов ЖК-панелей благодаря ряду достоинств:

  • Доступность. За годы развития технологию массово освоили многие компании, сделав массовый выпуск экранов IPS недорогим. Стоимость экрана для смартфона с разрешением FullHD сейчас стартует с отметки около $10. Благодаря низкой цене такие экраны делают смартфоны более доступными.
  • Цветопередача. Хорошо откалиброванный IPS экран передает цвета с максимальной точностью. Именно поэтому профессиональные мониторы для дизайнеров, графиков, фотографов и т. д. выпускаются на IPS матрицах. Они обладают наибольшим охватом оттенков, что позволяет получить на экране реалистичные цвета объектов.
  • Фиксированное энергопотребление. Жидкие кристаллы, формирующие картинку на IPS экране, почти не потребляют ток, основным потребителем являются диоды подсветки. Поэтому расход энергии не зависит от изображения на дисплее и определяется уровнем подсветки. Благодаря фиксированному расходу энергии IPS экраны обеспечивают примерно одинаковую автономность при просмотре фильмов, веб-серфинге, письменном общении и т.д.
  • Долговечность. Жидкие кристаллы почти не подвержены процессу старения и износа, поэтому в плане надежности IPS лучше, чем AMOLED. Деградировать могут светодиоды подсветки, но срок службы таких LED весьма велик (десятки тысяч часов), поэтому даже за 5 лет экран почти не теряет в яркости.

Яркость и технология подсветки

Человеческий глаз не приспособлен к тому, чтобы долго смотреть на яркий свет. Сколько вы продержитесь, уставившись на лампочку? Смартфоны и другие цифровые гаджеты помещают нас в искусственную обстановку, в которой мы вынуждены долго различать текст и изображения на фоне яркого освещения.

Именно это является причиной неестественной реакции организма: мы перестаем моргать. Глазное яблоко не смачивается достаточным количеством слезной жидкости, и в глазах возникает сухость, напряжение, ощущение «песка». Все в совокупности называется специальным медицинским термином – «синдром сухого глаза».

Здесь действует следующее правило: чем ярче и резче свет, тем вреднее он для глаз. Первый параметр зависит от того, насколько ярко светит экран по отношению к окружающей обстановке (читать с экрана ночью в темноте – определенно вредно), но это можно подкорректировать в настройках смартфона. Второй больше зависит от типа дисплея и использующейся в нем технологии подсветки.

 От солнца мы защищаемся темными очками, а от подсветки — почему-то ничем

Более старые дисплеи семейства LCD используют технологию постоянной подсветки. Жидкие кристаллы, составляющие основу таких дисплеев, подсвечиваются изнутри, за счет чего и формируется изображение. В зависимости от подвида дисплея, подсветка может быть более яркой или более приглушенной. Так, более дешевые дисплеи LCD-TFT тусклее, чем более продвинутые LCD-IPS, в которых применяется усиленная подсветка. Тем не менее, эффект здесь один и тот же: глаза постоянно подвергаются воздействию яркого света.

Более современные OLED-дисплеи в этом плане менее вредоносны, так как подсветка в них выборочная. Фактически, OLED-дисплей «всегда выключен», а светодиоды, составляющие основу экрана, загораются в зависимости от того, где и что нужно отобразить. Соответственно, световое воздействие этих экранов куда ниже, чем у предшественников, а свет намного мягче и безвреднее для глаз.

В целом, можно сказать, что четко ранжировать смартфоны по безвредности для глаз при всем желании не получится. Нельзя с уверенностью утверждать, что смартфон не портит зрение только потому, что он имеет разрешение Ultra HD или использует технологию Super AMOLED. Оценивать то, насколько экран подходит для ваших глаз, нужно исходя из комплекса факторов, и в первую очередь – из соображений собственного комфорта.

 Загрузка …

Фото: pixabay.com, pxhere.com

Медицинский ликбез от CHIP

Человеку, который проводит много времени в компании смартфона или любого другого устройства с дисплеем, следует опасаться двух вещей. Первая из них – это сухость глазного яблока, вторая – риск развития близорукости.

В норме мы моргаем около восемнадцати раз в минуту. При такой частоте движения век роговица глаза постоянно увлажняется слезной жидкостью. Глядя в экран, будь то монитор, экран ТВ или дисплей смартфона, мы попросту забываем моргать, из-за чего возникает ощущение сухости и усталости глаз.  Ученые подсчитали, что при контакте с экраном частота опускания век снижается до 2-3 раз в минуту – почти в 9 раз!

 Защитные очки без диоптрий пригодятся не только хипстерам, но и гаджетофилам

Близорукость, или миопия, вызванная контактом с экраном, бывает истинной и ложной. Сначала возникают спазмы глазных мышц, из-за которых при резком отрыве от экрана окружающая действительность начинает «расплываться». Это так называемая ложная миопия. Если же глазные мышцы постоянно испытывают напряжение, она постепенно нарастает, переходя в близорукость истинную, при которой глазное яблоко немного вытягивается. Тут уже ничего не попишешь – приходится надевать очки.

Каким образом дисплей цифрового устройства так плохо влияет на наши глаза? Есть несколько важных характеристик экрана смартфона, которые определяют, насколько вреден контакт с ним для человеческого зрения.

PPI количество точек на дюйм

Первая важная с офтальмологической точки зрения характеристика дисплея смартфона – это соотношение между его размером и разрешением, то есть количество точек на дюйм (pixels-per-inch или PPI).

В плане вреда для зрения это соотношение следует рассматривать следующим образом. Маленький экран с высоким разрешением гораздо более безопасен для глаз, чем большой с низким. На маленьком экране с высоким разрешением PPI будет выше, так как пиксели будут располагаться плотнее друг к другу, и картинка будет более четкой.

И наоборот: чем больше экран и ниже разрешение, тем ниже показатель PPI, и тем более размытым становится изображение. Из-за этого наши глаза вынуждены будут напрягаться, самостоятельно подстраивая резкость. Это ведет к вышеупомянутому перенапряжению и спазму мышц, который впоследствии может привести к близорукости.

 Если не следить за собой, то очки вскоре станут печальной необходимостью

Если вы хотите выбрать смартфон, который будет более безопасным для глаз, при покупке обратите внимание на размер диагонали экрана (в дюймах) и разрешение (ширина в пикселях и высота в пикселях). Соотношение между ними и будет значением PPI

Для примера возьмем два экрана с одинаковым разрешением 720×1280 (HD). Первый имеет диагональ 4,3″, и его PPI будет равен 342. Второй с диагональю 4,7″, и его PPI – 312. Несмотря на то, что оба дисплея являются HD-экранами, первый для глаз все-таки безопаснее.

Подсчитать PPI смартфона вашей мечты можно при помощи специальных онлайн-калькуляторов – например, вот такого. А если вам любопытно, насколько вреден для глаз ваш текущий смартфон, можно посетить сайт DPI love, который автоматически определит фактическую диагональ и разрешение экрана и подсчитает ваш показатель PPI.

Популярные размеры матриц в смартфонах

Размеры матриц цифровых фотокамер исторически принято измерять в дюймах. Но дюймы эти – не простые английские, а «видиконовые». Традиция их применения устоялась в прошлом столетии, когда кинокамеры были аналоговые. Регистрирующая ЭЛМ (электронно-лучевая мишень), именуемая видиконом, имела полезный размер, равный 2/3 от внешнего размера. Поэтому видиконовый дюйм равен 2/3 английского, или 17 мм. Матрица 1/3″ означает, что ее диагональ составляет одну третью от 17 мм, или около 5,66 мм.

1/4″

Самый маленький размер матрицы в камере смартфона, выпускаемого в современности. При таких габаритах матрица вмещает 8 миллионов транзисторов, стандартного размера 1,12 мкм. Такими камерами оснащаются бюджетные китайские смартфоны. Качество фотосъемки оставляет желать лучшего, зато достигается компактность. Поэтому подобными матрицами спереди оборудуют флагманские модели с передней камерой на 8 МП.

1/3,2″

Распространенный размер для камер с разрешением 8 МП, но увеличенным размером пикселя до 1,4 мкм. Такая матрица камеры ранее устанавливалась в Google Nexus 5, Meizu MX3, Moto G 2014. Сейчас подобная используется в бюджетных камерафонах (вроде UMI Rome X). Также она может устанавливаться в роли фронталки во флагманах, вроде ZTE Nubia Z9.

1/3″

Еще один ходовый размер матрицы, используемой во многих смартфонах. При сохранении стандартного размера пикселя 1,12 мкм, она обеспечивает разрешение 13 МП. Такими матрицами оснащены камеры Xiaomi Redmi Note 2 и 3, Mi 4c, Meizu M2 и M3 (как Mini, так и Note), Samsung Galaxy J5 2016, Samsung Galaxy S4 и многие другие. Отдельно выделяется Xiaomi Redmi Note 3 Pro, оснащенный матрицей такого размера, но с разрешением 16 МП. Уменьшение пикселя до 1 мкм позволило улучшить детализацию при ярком освещении, но сделало смартфоны хуже приспособленными к условиям средней и слабой освещенности.

Также стоит отметить iPhone 5s и 6, у которых размеры матрицы составляют 1/3″, но разрешение – всего 8 МП. За счет увеличенных пикселей эти смартфоны обеспечивают качество фото, не уступающее (а иногда и превосходящее) конкурентам с 13 и 16 МП. Такой же размер матрицы имеет и iPhone 6s, с разрешением 12 МП. Его показатели в этом плане немного превосходят конкурентов на 13 МП, так как габарит пикселя составляет 1,22 мкм (а не 1,12 мкм).

Снимок на камеру iPhone 6S

1/2,8″

Наиболее популярный размер матрицы камеры для смартфонов с 16 МП. Такие камеры встречаются у Xiaomi Max, OnePlus 3, Xiaomi Mi5. Эти смартфоны отличаются тем, что размер пикселя составляет 1,12 мкм. Почти 90 % устройств с 16 МП имеют матрицу размера 1/2,8″.

Cнимок на камеру Xiaomi Mi5

1/2,6″

Матрица 1/2,6″ – это уже «покушение» на класс реальных (а не маркетинговых) камерафонов. Такой оборудованы LG G4 (16 МП) и ZTE Nubia Z9. Также подобные матрицы встречаются в Samsung Galaxy S6 и S6 Edge, Note 5, Asus ZenFone 3 Ultra и другие флагманские устройства. Подобная камера (на 12 МП) использована в Samsung Galaxy S7, S7 Edge, Note 7, но с размером 1/2,6.

Снимок на смартфон LG G4

1/2,4″

Размер матрицы 1/2,4″ — это уже явный признак камерафона. Sony в своих 21-мегапикскльных камерах (как у Xperia Z1, Z2), а также Meizu MX4, MX5, сохраняют приемлемый размер пикселей 1,12 мкм, в угоду разрешению. Также такая матрица встречается в Moto X Force и других смартфонах.

1/2,3″

Фото с Sony Xperia Z1 Compact

Это уже «гигант» в мире мобильных камер. Наличие такой матрицы подразумевает, что производитель позаботился о разумном сочетании мегапикселей и размеров матрицы. Она встречается в Sony Xperia Z1 Compact, Xperia Z2 (оба – 21 МП). Такое сочетание позволяет добиться отличной детализации без особого ущерба четкости.

Более крупные матрицы камер

К сожалению, в прошлом остались матрицы, обладающие более крупными размерами. Сейчас они применяются только в фотоаппаратах (зеркальных, беззеркальных и мыльницах). Производители стараются поднять светочувствительность транзисторов матриц, улучшить их, но не всегда это возможно. Так как фокусное расстояние напрямую связано с размерами матрицы – увеличение оной приведет к росту высоты камеры. В век, когда превышать толщину смартфона более 10 мм становится моветоном и грешным делом – увидеть матрицы большего размера нам не суждено.

Матрица аналог пленки

Раньше, когда не было цифровых фотоаппаратов, в качестве светочувствительного элемента, то бишь матрицы, использовалась пленка. В принципе конструкция пленочного фотоаппарата от цифрового не слишком сильно отличается, в последнем больше электроники, а вот «приемник» света совершенно иной.

Когда в пленочном фотоаппарате вы нажимаете на кнопку спуска, открывается затвор, и свет попадает на пленку. До момента закрытия затвора происходит химическая реакция, результат которой – изображение, хранящееся на пленке, но невидимое глазу до момента проявки. Пример такого химического процесса – разложение галогенида серебра на атомы галогена и серебра.

Как видите, сама суть совершенно другая. Пишу это для того, чтобы вы запомнили, что в современном мире матрица выполняет функции пленки, т.е. формирует изображение. Кстати, разница между ними в хранении: пленка является непосредственно и местом хранения конечного изображения, в цифровой фотографии изображение сохраняется на картах памяти.

Резюмируем

Сразу хочу развеять ваши сомнения. Цель этой статьи — заложить у вас понимание, что и как работает. Не расстраивайтесь, если многое непонятно — главное, создать «полочки» в вашей голове, структуру, а потом по мере надобности заполнять их информацией. Но материал, безусловно, важен и является костяком для понимания фотографии. Поэтому, если совсем ничего непонятно, перечитайте еще раз либо вернитесь к нему позднее. И специально для вас сделаю краткую выдержку из того, что желательно отложить у себя в голове:

    Матрица – это один из важнейших элементов в камере, который фиксирует свет, превращая его в электрические сигналы. Не может быть заменена в камере. Является аналогом пленки в пленочных фотоаппаратах.
    Процесс получения снимка, когда открыт затвор, называется экспонированием.
    Матрица имеет множество характеристик. Размер – одна из важнейших, по нему косвенно можно предполагать остальные параметры. Как класс автомобиля – от седана B-класса не ждешь огромного пространства, как в седане E-класса, каким бы продвинутым и дорогим он ни был.
    Выбирая камеру с тем или иным размером матрицы, стоит понимать ее достоинства и недостатки и быть готовым ими пользоваться. Маленькая матрица больше всего страдает в условиях, когда света недостаточно
    Если планируете развиваться в сфере фотографии и вам это действительно нравится, советую обратить внимание на формат Micro 4/3 или остановиться на APS-C варианте.
    Качественная матрица — залог хорошего изображения. При выборе камеры нужно начинать с нее
    С другой стороны, в крайности бросаться тоже не нужно – дорогая полнокадровая камера с дешевым объективом вряд ли принесет хороший результат. Точнее, он будет хуже, чем мог бы быть. Но сегодня камеру с откровенно плохой матрицей нужно поискать.
    Не гонитесь за высоким разрешением

    Даже минимального в современных камерах будет за глаза.
    Вообще по приоритету, что важно для получения качественного изображения, писал тут. Рекомендую прочесть, если еще не читали

    Если у вас сложилось впечатление превосходства технических параметров над творчеством, эта статья покажет вам обратное, подводя к мысли, что важен баланс. Возможно смещение в творческую сторону. Но смещение в сторону технофильства ни к чему хорошему в плане результатов не приводит.

Что такое PLS

PLS – это авторская технология компании Samsung.

Очень долгое время производитель не говорил вообще ничего о своем детище и многие эксперты выдвигали различные предположения относительно характеристик PLS.

Собственно, и сейчас эта технология является покрытой большим количеством тайн. Но мы все-таки найдем правду!

PLS была выпущена в 2010 году в качестве альтернативы вышеупомянутой IPS.

Эта аббревиатура расшифровывается как Plane To Line Switching (то есть «переключение между линиями»).

Напомним, что IPS – это In-Plane-Switching, то есть «переключение между линиями». Имеется в виду переключение в плоскости.

И выше мы говорили о том, что в этой технологии жидкокристаллические молекулы быстро становятся плоскими и за счет этого достигается лучший угол обзора и другие характеристики.

Так вот, в PLS все происходит точно так же, но быстрее. На рисунке №2 все это показано наглядно.

Рис. №2. Работа PLS и IPS

На этом рисунке вверху находится сам экран, затем кристаллы, то есть те же ЖК молекулы, что на рисунке №1 были обозначены синими палочками.

Снизу показан электрод. Слева в обоих случаях показано их расположение выключенном состоянии (когда кристаллы не двигаются), а справа – во включенном.

Принцип работы такой же – когда начинается работа кристаллов, они начинают двигаться, при этом изначально они расположены параллельно друг другу.

Но, как видим на рисунке №2, эти кристаллы быстрее приобретают нужную форму – ту, которая необходима для максимально качественного отображения картинки.

За определенный отрезок времени молекулы в IPS мониторе не становятся в перпендикулярное положение, а в PLS становятся.

То есть в обеих технологиях все то же самое, но в PLS все происходит быстрее.

Отсюда промежуточный вывод – PLS работает быстрее и, по идее, именно эту технологию можно было бы считать лучшей в нашем сравнении.

Но окончательные выводы пока что делать рановато.

Это интересно: Компания Samsung несколько лет назад подала иск на LG. В нем утверждалось, что технология AH-IPS, которая используется LG, является модификацией технологии PLS. Отсюда можно сделать вывод, что PLS – это разновидность IPS и это признал сам разработчик. Собственно, это подтвердили и мы немного выше.

Что лучше PLS или IPS? Как выбрать хороший экран — руководство

Что лучше PLS или IPS? Как выбрать хороший экран — руководство

А что если я ничего не понял?

В таком случае вам поможет видео, которое находится в конце этой статьи. Там наглядно показаны мониторы TFT и IPS в разрезе.

Вы сможете увидеть, как все это работает и понять, что PLS все происходит точно так же, но быстрее, чем в IPS.

Теперь можем переходить к дальнейшему сравнению технологий.

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии